La historia de la Física del láser

2 septiembre 1, 2017

Un resumen de los descubrimientos que nos llevaron al láser

FÍSICA DEL LÁSER PARA EL MÉDICO

POR: ADRIÁN RÍOS MORA

UNILASER MÉDICA

 

La palabra láser significa  luz amplificada por emisión estimulada de radiación electromagnética. La luz es radiación electromagnética. El láser es la luz más densa posible creada por la manipulación de la materia   

En la mitad del siglo XIX  Faraday  consiguió manipular ondas electromagnéticas presumiendo que existían “campos” y Maxwell, los asentó en las matemáticas.  Entendida la onda como un desplazamiento de campos, generado por cargas a los materiales, estas  se desplazarían en contra de un medio y,  el hombre,  tuvo la necesidad de encontrar un concepto para calcular hasta cuando y donde se desplazaría una onda. Un abstracto, la energía, mediría la capacidad de movimiento y quietud pero fue Einstein,  quien dio el toque final al reconocer la necesidad de encontrar una constante universal, para que todo cálculo pudiera ser realizado.  Tan simple como establecer que la velocidad de la luz era la máxima posible, que la relación entre una masa y su energía es la velocidad de la luz y en su valor más alto, la masa se convertiría en su “capacidad”, pero no desaparecería. Para comienzos del siglo XX era ya claro que la materia,  su carga y su capacidad de trabajo eran transformables. Nada se pierde, todo se transforma.

En una abstracción con antelación de 50 años, ideó la ecuación de un láser.

La siguiente es una secuencia de eventos que abarcan desde el descubrimiento de la electricidad hasta el primer láser.

ALBERT EINSTEIN https://2.bp.blogspot.com/-Tf8nq8eYpDg/URjc8BkoZHI/AAAAAAAASkw/odKZLC845jg/s1600/23+++++1896.jpg

De_Magnete_Title_Page_1628_edition

https://2.bp.blogspot.com/-Tf8nq8eYpDg/URjc8BkoZHI/AAAAAAAASkw/odKZLC845jg/s1600/23+++++1896.jpg

En los inicios del año 1600 William Gilbert publica el resumen de años de experimentación con fenómenos magnéticos y eléctricos : De magnete. Gilbert se esforzó en diferenciar electricidad versus magnetismo y fue su descripción del fenómeno de inclinación magnética terrestre lo que llevó a entender como funcionaba la brújula. Gilbert acuñó la palabra “eléctrico” del  nombre griego para el ámbar debido a su propiedad de atracción por medio de la fricción de materiales.

1660-guerickemachineVon Guericke décadas después, estudió las similitudes de la electricidad y del magnetismo;  era prolijo inventor y utilizó el azufre como aislante  con el cual, obtuvo chispas por fricción. Describió el primer efecto de luminiscencia de origen eléctrico al observar un halo de luz alrededor de la bola de azufre. Para facilitar la creación de electricidad inventó la primera bomba de vacío.

http://www.magnet.fsu.edu/education/tutorials/museum/sulfurglobe.html

francis-hauksbee-experimento

Comenzando el siglo XVIII Francis Hauksbee inventó un dispositivo que generaba una luz azul ténue y además, una más potente electricidad al excitar por fricción mercurio dentro de una bola de vidrio al vacío. Hauksbee sin embargo, no obtuvo mucha atención de su jefe Newton.

El que si le prestó atención a la lámpara de Hauksbee fue Stephen Gray quien analizó materiales electrizados y clasificó los cuerpos eléctricos  como aislantes pues sin fricción previa,  no trasmitían y llamó conductores a los metales por su capacidad de conducir la electricidad. Gray descubrió además, el efecto del polo a tierra, cuando encuentra que un conductor electrificado trasmitía electricidad distancias más largas si no estaba en contacto con el suelo .

 

https://teknikailuminacion.wordpress.com/category/historia-de-la-luz/

 

du fay

http://www.rubes.es/cursos/divulgadores/02img.htm

http://recursostic.educacion.es/eda/web/eda2010/newton/materiales/ruiz_castillo_jose_p3/fe.html

botella de leyden

Con Charles Du Fay se conocería el concepto de carga pues, observaba diferentes formas de manifestación de atracción según el material con el que se frotaran los materiales. Propuso dos clases de carga: mucinosa y vítrea que pocos años después Franklin simplifica y plantea que  la carga eléctrica es un fluido que corre desde donde hay más hacía adonde hay menos.

La electricidad necesitaba acumularse para poder ser mejor utilizada pues se requería  fricción constante para obtenerla. En Leyden en  1746 Pieter van Musshenbroek convencido de que la electricidad se comportaba como un fluido, trata de almacenarla en el agua dentro de una botella que carga por fricción y conecta al exterior por medio de un conductor sumergido en la botella. No lograba obtener electricidad hasta que un día, tomó la botella con una mano mientras la cargada y con la otra mano, tocó el cable conductor. La descarga eléctrica fue tan potente que juró no repetir el experimento ni por todo el oro de Francia. La mano de Musshenbroek fue posteriormente, reemplazada por metales conductores en la pared de la botella sin entenderse muy bien porque había que hacer esto y de esta forma, se consiguió almacenar electricidad.

http://www.fisica.uh.cu/bibvirtual/vida%20y%20tierra/elect-embotellada/index.htm

esquema-de-la-formacion-de-un-rayo

En 1752, posterior a varios años de experimentos con la Botella de Leyden, Franklin propuso la explicación al efecto de carga de la botella, pues no fluiría la electricidad desde el agua cargada al exterior mientras no se dispusiera de un conductor que  contactara dos cargas diferentes: la acumulada en el agua y la del suelo. Esto se lograría con un polo a tierra pues sin este, en ambos lados del vidrio de la botella solo se acumularían dos cargas aisladas. El conductor posibilitaba que las dos diferentes cargas se contactaran fluyendo desde la mayor hacia la menor y así se produjeron las chispas que casi matan a Musshenbroek.

fromula de coulomb

La definición matemática de las cargas se logra gracias a Coulomb, Poisson, Cavendish, Gauss entre otros.  Charles-Augstin de Coulomb ideó un instrumento llamado “balanza de torsión” para medir fuerzas eléctricas muy débiles, por medio del desplazamiento de unas esferas expuestas a diferentes cargas. Coulomb descubre que las fuerzas eléctricas compartían con las leyes gravitacionales la ley de inverso cuadrado, la fuerza resultante es proporcional el producto de las cargas y es inversamente proporcional al cuadrado de la distancia que las separa, la cual se convierte en  ley cuantitativa de la electroestática.

https://sites.google.com/site/naturalezaelectromagnetica/la-carga-electrica/f

cavendish

Henry Cavendish deduce el concepto de cantidad en el fluido eléctrico trasmitido, el que conocemos hoy como amperaje. Al identificar electricidad en las Rayas la asocia con la generada por la botella de Leyden y observa que la diferencia estaba en que la del animal no producía chispas. Se dice, que utilizó como galvanómetro su propio cuerpo pues medía las cargas de acuerdo a la sacudida y que también, identificó circuitos y por lo mismo, predijo las resistencias 45 años antes que Ohm la explicara en terminos matemáticos.

http://www.sciencedirect.com/science/article/pii/S0166223699015441

Articulo 045 - Volta - Rana

Muy cerca estuvo Cavendish de obtener la electricidad continua pero fue en Italia en donde se descubrió, a partir de una de las controversias más productivas de la Historia, entre Galvani y Volta acerca de la llamada electricidad animal.  Luigi Galvani entre muchos hallazgos de experimentos de electricidad en animales, había encontrado que si colocaba dos conductores de diferente tipo de metal  lograba hacer mover las patas de una rana muerta sin requerir ninguna fuente de electricidad. Atribuyó el fenómeno a una acción intrínseca al tejido animal.

http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=55

pila-voltaEste argumento no convenció a Volta quien utilizó los dos conductores de Galvani y reemplazó el tejido animal por una solución de ácido. Lo sorprendente fue encontrar que la electricidad era más potente y durable a mayor cantidad de pilas de conductores entre toallas empapadas con ácido. Volta publicó su hallazgo en los albores del siglo XIX comenzando una era muy veloz de otros grandes descubrimientos gracias a la electrcidad continua. Volta nunca encontró una explicación del porqué su pila generaba electricidad sin presumiblemente, utilizar aislantes; pues no se conocían las reacciones de oxido-reducción.

Hidrolisis

Con la pila de Volta se catapultó la Quimica como ciencia. Nicholson y Carlisle al intentar mejorar la carga de la energía de la pila notaron que el agua por estímulo eléctrico se descomponía en dos partes de Hidrogeno por cada una de Oxigeno (1800). También con este método llamado desde entonces electrólisis, Humphry Davy obtiene los elementos K,Ba,Na,Ca,Mg,Sr,Cl, Li. Desde Lavoisier quien había comenzado con medir las cantidades de los componentes de las substancias (1789), Proust quien encontró que existían cantidades fijas en la composición de las diferentes substancias (1797), Dalton quien le colocó números a los elementos de acuerdo a su masa (1803) y Avogadro quien propuso que volumenes iguales  de diferentes gases contienen números iguales de moléculas bajo condiciones fijas de presión y temperatura (1811), la existencia del átomo se daba como un hecho en los inicios del siglo XIX.

difracción

A comienzos del Siglo XVIII después del descubrimiento del fenómeno de la difracción en 1665 por Grimaldi suponía una naturaleza ondular. Existían dos teorías aparentemente excluyentes: ondular y corpuscular. De un lado, Hooke describió el comportamiento de los frentes de las ondas en su desplazamiento. Del otro lado, Newton encuentra que la explicación del desdoblamiento de la  luz blanca en colores apoyaban su naturaleza corpuscular. Solo hasta el siglo XX Einstein demuestra que Ambos tenían razón: Los fotones son partículas que constituyen la luz la cual, se desplaza como ondas.

http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/084/htm/sec_6.htm

doble rendija young

Apoyando la naturaleza ondulatoria de la luz, en 1801 Thomas Young demuestra que dos rayos difractados generan luz que se desplaza por medio de ondas que se propulsan y se cancelan unas con otras como las ondas de desplazamiento de una perturbación del agua en su experimento de la doble rendija. El experimento permitía medir las longitudes de las ondas y Anders Jonas Ångström a mitad del siglo XIX, realiza mediciones más precisas.

http://www.fisicanet.com.ar/fisica/ondas/ap11_luz.php

http://www.inventosmodernos.cl/bateria.htm

oersted

Y por fin, en 1820 Hans Christian Ørsted asoció en forma irrefutable la electricidad y magnetismo. Ørsted analizó experimentos con electricidad continua y magnetismo para encontrar que la electricidad continua al contrario de la estática, si afectaba el magnetismo, pues si se colocaba un conductor electrificado con electricidad de un pila voltáica sobre una aguja imantada, esta se movía en dirección perpendicular perdiendo su orientación Norte-Sur.

http://www.kids.csic.es/cientificos/img/fichascientificos/fichaoersted.png

hiloampere

http://eltamiz.com/2012/02/09/las-ecuaciones-de-maxwell-la-inspiracion-de-la-relatividad/

La demostración de la asociación de las fuerzas eléctricas y magnéticas  llevó a científicos como Ampère y Faraday a muchos más experimentos. Por un lado, André-Marie Ampère matemático y químico encontró que no solo las fuerzas eléctricas actuaban sobre el imán, sino también actuaban entre sí, pues cuando la corriente en los conductores iba en la misma dirección, los conductores se atraían mientras que, cuando iban en sentido contrario se repelían. Ampère  estudió las fuerzas electromagnéticas en sus relaciones con la ley del inverso cuadrado a la distancia, encontrando vectores predecibles que establecían campos circulares, de tanto fuerzas magnéticas como eléctricas.

faraday

http://www.sparkmuseum.com/MOTORS.HTM

Michael Faraday demuestra el movimiento circular de la electricidad  con un experimento creando un circuito alimentado con una batería y una aguja de cobre sumergida en una jarra con una solución conductora alrededor de un imán.  Entre la fuente de electricidad y el imán, la aguja suspendida en una solución conductora con mercurio permitía recrear un movimiento ondular. Este experimento demostró la posibilidad de obtener fuerza dinámica proveniente del electromagnetismo y es aún hoy, el modelo básico de un motor eléctrico. Faraday tambien buscó lo contrario es decir, obtener electricidad a partir del magnetismo y en 1831 posterior a 10 años de experimentos demuestra que si se desplazaban campos magnéticos  en la dirección correcta ante un flujo eléctrico se creaban lineas de fuerza capaces de generar electricidad continua.

http://neriosnayaelizabeth.blogspot.com/

maxwellJames Clerck Maxwell emprendió la tarea de construir una teoría matemática para explicar las líneas de fuerza que describía Faraday en sus experimentos. Faraday no podía explicar una acción a distancia e intuyó que las ondas deberían desplazarse por medio de alteraciones de un medio elástico, el éter el cual; trasmitiría las atracciones y repulsiones. En 1865 Maxwell propone su teoría dinámica del campo electromagnético basado en las concepciones de Faraday acerca de las líneas de fuerza.  En primer lugar Maxwell se encarga de obtener expresiones cuantitativas, Maxwell plantea que así como un campo magnético puede generar un campo eléctrico, el campo eléctrico también puede generar un campo magnético. Los campos eléctricos son generados por cargas eléctricas en reposo o en movimiento y son proporcionales a la carga contenida. No existen cargas magnéticas, estas son un efecto de las cargas eléctricas. En segundo lugar, Maxwell busca la compatibilidad entre las ecuaciones obtenidas y las leyes de conservación de la energía resumidas en 1847 por Hermann von Helmholtz quien formuló el principio de conservación de la energía. Trabajo y energía pueden transformarse uno en otro. El calor entonces como manifestación obvia de energía, comienza a considerarse un resultado del movimiento y no, un fluido

ecuaciones opticasLo sorprendente en la teoría de Maxwell fue predecir que un campo electromagnético variable puede subsistir y propagarse aún después de que ha cesado el movimiento de las cargas que lo generan. El campo electromagnético posee energía, momento lineal y angular distribuido en el espacio de modo continuo por medio de ondas en el espacio vacío. Los campos son perpendiculares a la dirección de propagación y también entre sí. Este hallazgo confirmado por constantes de las ecuaciones de los campos electromagnéticos  que dedujeron un valor para la  velocidad de la luz igual al obtenido previamente por Fizeau y Foucault confirmaron las sospechas de que la luz tenía que ser una onda electromagnética.

http://2011lmke.files.wordpress.com/2011/02/ksr.gif

https://upload.wikimedia.org/wikipedia/commons/8/80/Sadi_Carnot.jpeg

La energía es un concepto inventado por el hombre para entender el movimiento y la materia. A finales del siglo XVIII Lavoisier había establecido que la materia ni se creaba ni se destruía, se trasformaba. El paso siguiente fue aplicar el mismo concepto para la energía, aceptando que existiera. Se terminó aceptando posterior a que Sadi Carnot relacionara temperatura y trabajo mecánico al estudiar el rendimiento de las máquinas de vapor. A la trasformación de un tipo de energía en otra, la  llamó “potencia motriz del fuego”. Carnot comprobó  que el trabajo mecánico se obtenía entonces, cuando la máquina pasa de una alta temperatura a una baja. El primero que enunció la conservación de la energía fue el médico Julius von Mayer quien la reconoció en el color de la sangre venosa de las personas en el trópico. Conocedor de los estudios de Lavoisier concluyó que la sangre era más clara en el trópico porque el cuerpo necesitaba menos oxígeno para mantener la temperatura e intentó entonces, medir  la temperatura de combustión generada por un trabajo mecánico. Von Mayer publicó sus experimentos 5 años antes de que Helmholtz propusiera en 1847, la ley de la conservación de la energía. Al final, fue James Prescott Joule quien posterior a experimentos encuentra el valor numérico del equivalente mecánico del calor: 0,424.

http://mind42.com/mindmap/8f564596-6cdb-42b9-be27-6b2d62e3af92?rel=gallery

hertzEn 1887 después de los experimentos Heinrich Hertz, no quedó duda alguna de la existencia de los campos electromagnéticos descritos por Maxwell y haciendo esto, Hertz encontró las ondas de radiodifusión las cuales notó que se desplazaban mucho más lejos. Experimentando con las ondas de radio Hertz que era más fácil provocar chispas en el detector de radio con la presencia de luz. La luz parecía extraerle electricidad al metal y por esto lo llamó efecto fotoeléctrico.

 

http://timerime.com/en/event/2137411/Rayos+catodicos/

plucker 2Y fue también en 1887 cuando se aceptan los postulados de Arrhenius, quien propuso la existencia de carga eléctrica en los iones. Estos habían sido nombrados así tomando el nombre Griego, “sin rumbo”. Para Faraday, quien primero los describió fue más importante relacionar peso del elemento y cantidad de energía, nunca se le ocurrió asociar iones con los campos eléctricos que magistralmente predijo. La electricidad explicaba muchas y muy diferentes reacciones químicas de un mismo elemento. En el propósito de visualizar la electricidad se habían inventado fuentes de luz, basadas en crear corrientes de iones que chocaban contra átomos de Oxígeno o Nitrógeno para así, observarse  luz. En 1858,  Plucker también había demostrado su naturaleza electromagnética al observar desviación de la luz con un imán.

http://commons.wikimedia.org/wiki/File:Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben(3).jpg#mediaviewer/File:Kat%C3%B3dsugarak_m%C3%A1gneses_mez%C5%91ben(3).jpg

Katódsugarak_mágneses_mezőben(3)

«Katódsugarak mágneses mezőben(3)» de Zátonyi Sándor, (ifj.) – Trabajo propio. Disponible bajo la licencia CC BY-SA 3.0 vía Wikimedia Commons –

A finales de siglo XIX era claro que existían en la naturaleza diferentes  formas de luz  pues, habían sido ya descubiertos los rayos infrarrojos (Herschel, 1800), ultravioletas ( Ritter,1801) y los rayos  “X” ( Roentgen,1896). En la investigación de los rayos catódicos, descubiertos por Crookes en 1870  se sabía que, estos rayos que proyectaban sombras, portaban energía al parecer negativa desde un extremo al otro; como partían desde el cátodo, Goldstein en 1876 los llamó “catódicos”.    Philipp Lenard asistente de Hertz descubre una forma de visualizarlos pero aún así, no se demostraba su comportamiento como radiación electromagnética, pues no ocurrían atracciones o repulsiones entre ellos. Una vez que se entiende el funcionamiento de los tubos de rayos catódicos, el paso siguiente fue medir la masa de estos rayos pues parecían tenerla, al demostrar Crookes que podían ser desviados por fuerzas electromagnéticas. Aún no se sabía si estos rayos eran átomos, moléculas o algo más. El primer paso lo da Schuster quien mide la relación carga masa, pero el valor fue superior al esperado y nadie le creyó. En 1896 J.J Thomson estima que estos rayos efectivamente compuestos por partículas de cerca a mil veces más pequeños que el ión más pequeño conocido, el de hidrógeno. A este material lo llamó “corpúsculo” y más tarde demuestra que estos corpúsculos eran universales, independientes del material que se utilizara. Años atrás en 1891,  Fitzgerald y su sobrino Stoney ya lo llamaban ” electrón” la partícula de la electricidad.

 

http://cronoviajes.blogspot.com/2010_08_01_archive.html

https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/RWP-comparison.svg/600px-RWP-comparison.svg.png

Bajo la teoría de ondas, no se podía explicar el cambio de color de los materiales con el aumento de la temperatura. Se escogió  medir la energía posterior a calentar un cuerpo llamado negro para representar algo que absorbería toda la energía posible y medir la radiación que emitiría bajo condiciones como el tipo de material y la temperatura. Un cuerpo negro podría ser una caja blanca que reflejara todo, para que al cambio de su temperatura, se produjera radiación medida en algún punto de salida, un orificio, por ejemplo. Stefan y Woltzmann encontraron que la energía emitida dependía solo de la cuarta potencia de la temperatura. Para encontrar la distribución espectral de los colores,  Wien-Golitzin encontraron que al elevar la temperatura del cuerpo negro se observaba una curva en la cual, a mayor frecuencia disminuía la radiación, algo así que con el aumento de la frecuencia, se debería obtener desde el color rojo hasta el violeta, pero el último color observado era el azul y no el violeta.  Al intentar unificar estas teorías,  Rayleigh y Jeans  obtuvieron una línea similar a la de Wein-Golitzin en el  rango  infrarrojo  pero, en el lado ultravioleta, a mayor frecuencia, la curva se convertía en una línea más compatible con lo planteado por Stefan-Woltzmann;  se elevaba hacía el infinito y esto significaba que al considerar temperatura y  frecuencias de las radiaciones, los datos se abrían en una espantosa contradicción. La paradoja la  llamaron  “catástrofe ultravioleta”. La única forma en que se podía resolver esto, porque todos ya aceptaban la curva de Wein-Golitzi,  la justifica Max Planck a finales del año 1900,  asumiendo que un valor obtenido de energía correspondería solo a un valor de frecuencia de onda afectado por una contante.  Un “truco matemático” como el mismo autor lo llamó.

El valor de la constante encontrada por Planck fue:

6.62606896 x 10-34 Julios/segundo

Cada onda electromagnética guarda un nivel de energía relacionado a su fuente al cual determina su frecuencia “v “ La energía de cada onda cambiará de acuerdo a valores enteros (1,2,3, etcétera)  llamados “cuantos”.

E=h v

Energía=Constante de Planck (h) x Frecuencia de la onda.

 

WOLDEMAR VOIGT https://upload.wikimedia.org/wikipedia/commons/d/d4/Woldemar-Voigt_1850-1919.jpg

A comienzos del siglo XX, parecían ser aceptadas las teorías del desplazamiento ondulatorio de la luz, y en general, toda la Física. Sin embargo, las ecuaciones de Maxwell no explicaban el medio en que se desplazara la luz. Los postulados de Newton y Galileo sumaban las velocidades para calcular la resultante de dos cuerpos en movimiento, pero esta se afectaría si el medio es el vacío o el espacio.  Así como el medio de desplazamiento del sonido es el desplazamiento del aire,  Newton había llamado  “eter” al medio en  que se desplazaba la luz. Al éter, en un periodo de casi 200 años,  se le atribuyeron muchas características para que pudiera ser concebido.  Michelson y Morley para el año 1887 intentaron encontrar el éter en un experimento para calcular las diferencias de la velocidad de la luz entre el sol a la tierra. Utilizaron unos brazos para desdoblar rayos de luz y medir sus diferencias de llegada afectadas de seguro, por la presencia del éter.  El experimento fue repetido hasta la saciedad y siempre la velocidad de la luz permanecía constante, el éter no pudo ser medido.  Woldemar Woigt fue de los pocos que les creyó a Michelson y Morley y entonces, buscó un sistema de referencia (medio) para las ecuaciones de Maxwell, previendo las transformaciones de las ecuaciones que posteriormente hizo Lorenz quien, introdujo  el concepto de “tiempo local” para adaptar  las ecuaciones de Maxwell al movimiento pero, mantuvo el éter al igual que otros famosos como Poincaré.   Para Lorentz , el experimento de Michelson y Morley  demostraba que los cuerpos a velocidades cercanas a la de la luz, se contraían y por esto no pudieron ser detectadas las “brisas” del éter. Einstein, como el mismo lo diría después, dio el toque final a todas estas conjeturas. Para empezar, había que aceptar que la velocidad de la luz era independiente del observador. Si un observador pudiera ir más rápido que la luz entonces, sus campos electromagnéticos no se desplazarían y por lo tanto, la luz desaparecería. Nada podría ir más rápido que la velocidad de la luz. Einstein, aplicando la física conocida para los cuerpos y las trasformaciones de Lorenz,  fijó la velocidad como una constante y todas las formulaciones se facilitaron. Si nos acercáramos o alejáramos a una fuente de luz como la velocidad de la luz es fija, lo único posible que puede variar es el tiempo y el espacio; dependiendo si se mide desde el observador o desde el cuerpo.  Se  encontrará que el tiempo corre más lento para un cuerpo en movimiento que para un cuerpo quieto. Esto no se puede notar ni siquiera, considerando el cuerpo en movimiento, un cohete que viajará a dos o tres veces la velocidad del sonido. Se comprobó después, con el estudio de las partículas atómicas. Estudiando los muones que viajan a velocidades cercanas a la de la luz, para el observador solo duran microsegundos antes de desaparecer y sin embargo,  millones de muones llegan a la Tierra desde distancias tan largas que en su recorrido, tardarían mucho más de lo que sabemos, es su tiempo de existencia. Según la teoría de la relatividad, para los muones el tiempo no ha pasado tan rápido y pueden existir otros microsegundos más.

foton_elec

http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/Ef_Fotoelectrico/imagenes/foton_elec.gif

A finales del siglo XIX posterior a  que  Hertz en 1867 descubriera el efecto fotoeléctrico, no se explicaba porqué existía un umbral de frecuencia de onda para que el fenómeno ocurriera y la causa de que este fuera instantáneo. La teoría ondulatoria de la luz relacionaba como con las cuerdas de una guitarra,  que una mayor energía aumentaba la amplitud de la onda y lo que ocurría era precisamente lo contrario, las bajas longitudes de onda (luz ultravioleta) eran las que instantáneamente producían esta energía aparentemente, adicional. Einstein a comienzos del siglo XX había planteado una nueva teoría para la conservación de la energía en la “electrodinámica para los cuerpos en movimiento” (teoría especial de la relatividad). Einstein estableció un límite para la máxima velocidad posible, la de la luz y así pudo relacionar de forma directa energía, masa y velocidad. Si la energía se conservara, el efecto fotoeléctrico se producía entonces,  porque la energía emitida por el metal dependía de la energía incidente menos la que se usara. El gasto de energía discontinuo, con umbral,  estaría afectado por los niveles o cuantos de la energía incidente necesaria de acuerdo a la fórmula de Planck. Ni siquiera Planck le creyó a Einstein hasta que Millikan y Fletcher en 1914 miden la carga del electrón y posteriormente, Compton en el año 1923  encontró el aumento de la longitud de onda producido por el choque entre fotón y electrón. Por último, la vieja discusión acerca de si la luz era onda o partícula, termina en “empate” para Louis-Victor de Broglie quien declara que las propiedades ondulatorias de las partículas también están mediadas por la constante de Planck. De forma sorprendente, basado en cálculos matemáticos, la teoría de la relatividad especial de Einstein y la ley de Planck aparecen en este postulado que unía prácticamente todo lo conocido hasta entonces y que  tuvo posteriormente, hallazgos experimentales que lo confirmaron plenamente.

https://upload.wikimedia.org/wikipedia/commons/6/6c/Compton-effekt1.png

 

https://upload.wikimedia.org/wikipedia/commons/d/d1/Modelo_de_Bohr.png

El descubrimiento de la radioactividad por Becquerel y la posibilidad de medirla, desarrollada por los Curie inspiraron a Rutherford en 1906 a descubrir  las radiaciones Alfa que resultaron ser los núcleos y las radiaciones Beta que se confirmó eran electrones. El descubrimiento de la cristalografía con Rayos X por Laue en 1912, permitió la medición de las ondas ultravioleta, la más cercana al diámetro del átomo y así Moseley en 1913 asignó un número “atómico” determinado por el número de protones como la identidad de cada elemento químico.

Desde el modelo del átomo indivisible de Dalton (1803)  hasta el de  Thomson (1904) quien le agregó las cargas de energía, Rutherford  localizaba las cargas definiendo núcleos y electrones. Se planteaba  entonces la pregunta de porque el átomo no colapsa a pesar de poseer dos cargas opuestas entre la positiva del núcleo y la negativa del electrón. Bohr en 1913 basado posiblemente en el descubrimiento de Broglie y de que se conocía de que la manera como la materia y radiación compartían energía era por medio de fotones o cuantos, planteó niveles de energía orbitales para el electrón. El átomo mantendría su estado físico hasta que los cambie por números enteros de valores de energía entrante o saliente.  El modelo de Bohr solo funcionó para el átomo de hidrógeno.  Sommerfeld (1916) estableció subniveles y  órbitas y  Schrödinger en 1924 orbitales de trayectoria para los electrones.

Se establecieron 4 números cuánticos uno el principal , para el nivel energético, otro para la órbita, un tercero que se refiere a un eje  y un cuarto descubierto por Paul Dirac, el espín, para la autorotación de cada partícula. Pauli  había llamado al orden con su principio de exclusión que establecía que dos electrones no podían ocupar el mismo nivel energético si poseían los 4 números cuánticos iguales y aceptando esto, el electrón del átomo de hidrógeno con un solo nivel no tiene problemas, el de helio con dos electrones, recurre a la diferencia del espín, el de litio agrega un tercero que ocupa otro nivel energético disponible para la reacción con otro elemento químico y así se entiende como funciona la tabla periódica.

Satyendra Nath Bose https://upload.wikimedia.org/wikipedia/commons/f/fe/SatyenBose1925.jpg

En honor a Satyendra Nath Bose, Dirac propuso el término “boson” que incluye nuestros viejos conocidos los fotones. Bose pudo haber sido completamente ignorado de no haber enviado sus trabajos a Einstein. Si todo el universo se constituye de radiación y materia, la materia se divide en fermiones y bosones. Los fermiones en honor a Fermi para los electrones, los bosones para los fotones. La diferencia entre las dos partículas aplica el principio de exclusión de Pauli para los fermiones y para los bosones  su comportamiento contrario pues, se agregan entre ellos más fácilmente debido a que sus autorotaciones les permite estar más juntos.

EL LÁSER

Einstein dedujo matemáticamente un láser 40 años antes de que se fabricara el primer equipo, al buscar una explicación al  equilibrio térmico de un gas en un tubo  incandescente, en el que la cantidad de calor que recibe es igual a la que emite por la suposición de que, había que admitir la existencia de cierta emisión de radiación inducida que mantuviera el tubo encendido en equilibrio. Eistein planteó que esto implicaba 3  procesos, absorción de un fotón, emisión espontánea(luminiscencia) y emisión estimulada

La fórmula matemática de un láser creada por Einstein, queda expresada  en la siguiente relación cuantitativa:

P(Vij)= hvij[niA ij + (ni – nj ) Bij u(vij)]

P(Vij) es la potencia total radiada por unidad de volumen v.g. el láser.

hVij se refiere al proceso de emisión espontánea  alterado por un cálculo de luz inducida en donde un átomo  Ei puede emitir un cuanto de radiación de frecuencia Vij , cayendo de este modo a un estado Ej que es el estado de reposo.  h es la constante de Planck,  A y B son los coeficientes que calculó Einstein de radiación espontánea (A) e inducida (B).  Se calcula la probabilidad de los saltos electrónicos estimulados proporcional a la densidad de  energía de la radiación u(vij) y a la diferencia de población entre el estado superior e inferior de energía (ni-nj).

EMISIÓN ESPONTÁNEA DE LUZ

Emision espontanea(1)En la emisión espontánea el electrón recibe un fotón con energía igual a la que porta y gana un nivel cuántico para regresar a su nivel basal liberando el fotón que lo estimuló.

EMISIÓN ESTIMULADA DE LUZ

Emision estimuladaEn la emisión estimulada de luz un fotón choca contra un electrón cargado antes de que regrese al nivel basal. El electrón liberará entonces, dos fotones para su regreso.

El láser se convierte en una realidad posterior al  invento del Radar el cual, lleva a  crear cajas de resonancia capaces de hacer rebotar fotones en cantidad suficiente para generar rayos más potentes.

CAJA DE RESONANCIA DEL LÁSER

Caja de resonanciaLa generación de un efecto multiplicador se consigue cuando en condiciones de resonancia se generan altas poblaciones de electrones estimulados para una mayor obtención de fotones. Esto se logró posterior al invento del Radar.

Posterior al primer láser de Ted Maiman en 1960 se han fabricado muchos láseres obtenidos de  diversos materiales gaseosos, líquidos y sólidos los cuales, permiten aplicaciones en diversas especialidades médicas pues cada uno de ellos muestra una particularidad que va ligada a su longitud de onda, a la posibilidad de graduar efectos de acuerdo a su potencia, tiempos y modos de exposición a los tejidos además de su capacidad de acceso por medios ópticos. De todo lo anterior se esperan aplicaciones infinitas.

 

Publicado en Noticias
Comentarios (2)
Milly2017 April 9Responder
No colimapnts on this end, simply a good piece.
admin2017 August 17Responder
Thank you!

Comentar

Top